A Universal Approach to Developing Fast Algorithm for Simplified Order-16 ICT

Jie Dong, King Ngi Ngan, Chi Keung Fong and Wai Kuen Cham

Department of Electronic Engineering
The Chinese University of Hong Kong

ISCAS2007, May 27-30, New Orleans, USA
Outline

- Introduction
- Simplified order-16 ICT
- Proposed approach
- Complexity analysis
- Conclusion and future work
Introduction

- **Integer Cosine Transform (ICT)**
 - **Pro:** Integer arithmetic implementation
 - Avoid mismatch between encoder and decoder
 - Good energy compaction capability if well-designed
 - Fast algorithms can be developed in the similar way for DCT
 - **Con:** Orthogonality depends on the elements of transform matrix, when the ICT is larger than order-4.

- **ICT for video coding**
 - Order-4 and Order-8 ICTs in H.264
 - Order-8 ICT in Audio Video Standard (AVS)
 - Order-16 ICT: efficient tool especially for HD video coding

- **Simplified Order-16 ICT**
 - **Pro:** Simpler while preserving the advantages of order-16 ICT
 - **Con:** Cannot develop fast algorithm in the similar way for DCT/ICT
Simplified Order-16 ICT

General transform matrix

- **• Contain at most 15 different integers**
 - o o o o o o o o o | o o ...
 - a b c d e f g h -h -g ...
 - i j k l -l -k -j -i -i -j ...
 - e f g h -a -b -c -d d c ...
 - m n -n -m -m -n n m m n ...
 - c d -a -b -g -h e f -f -e ...
 - j -l -i -k k i l -j -j l ...
 - h g -f -e d c -b -a a b ...
 - o -o -o o o -o -o o o -o ...
 - g -h e f c -d -a b -b a ...
 - k -i l j -j -l i -k -k i ...
 - b -a -d c -f e h -g g -h ...
 - n -m m -n -n m -m n n -m ...
 - d -c b -a -h g -f e -e f ...
 - l -k j -i i -j k -l -l k ...
 - f -e h -g b -a d -c c -d ...

ISCAS2007
Flow Diagram

- Even part (T_{8e})
 - o o o o o o o o
 - i j k l l k j i
 - m n n m m n n m
 - j $-l$ i $-k$ k i l j
 - o $-o$ o o o o o o
 - k $-i$ l j j $-l$ i $-k$
 - n $-m$ m n n m m n
 - l $-k$ j i i j k l

- Odd part (T_{8o})
 - a b c d e f g h
 - e f g h $-a$ $-b$ $-c$ $-d$
 - c d $-a$ $-b$ $-g$ $-h$ e f
 - h g $-f$ $-e$ d c $-b$ $-a$
 - g $-h$ $-e$ f c $-d$ $-a$ b
 - b $-a$ $-d$ c $-f$ e h $-g$
 - d $-c$ b $-a$ $-h$ g $-f$ e
 - f $-e$ h $-g$ b $-a$ d $-c$
Steps of the Proposed Approach

- Separate the 2-D transform into 2 1-D transforms
- Using 8 butterflies (left block) to exploit the symmetries w.r.t the dash line in the general transform matrix
- Fast algorithm for the even part (upper-right block) that is exactly the general transform matrix of an order-8 ICT.
 - Borrow order-8 ICTs and their fast algorithms, e.g., order-8 ICTs in H.264 or AVS
 - Otherwise, the fast algorithm will be developed in the same way for the odd part.
- Fast algorithm for the odd part (bottom-right block)
An Order-8 ICT and its Fast Algorithm

- Order-8 ICT in H.264 is borrowed as the even part (upper-right block) of the simplified order-16 ICT

<table>
<thead>
<tr>
<th>8 8 8 8 8 8 8 8</th>
<th>10 6 3 -6 -10 -12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 4 -4 -8 -8 -4 4 8</td>
<td>10 -3 -12 -6 6 12 3 -10</td>
</tr>
<tr>
<td>8 -8 -8 8 8 -8 -8 8</td>
<td>6 -12 3 10 -10 -3 12 -6</td>
</tr>
<tr>
<td>6 -12 3 10 -10 -3 12 -6</td>
<td>4 -8 8 -4 -4 8 -8 4</td>
</tr>
<tr>
<td>3 -6 10 -12 12 -10 6 -3</td>
<td>3 -6 10 -12 12 -10 6 -3</td>
</tr>
</tbody>
</table>

Fast Algorithm for order-8 ICT

ISCAS2007
Fast Algorithm for the Odd Part

- T_{8o}: a type of dyadic transform having different structures with the odd part of DCT/ICT

- Decompose T_{8o} to the multiplication of three 8x8 matrices instead of butterfly operations

 $T_{8o} = M_2 \times M_3 \times M_4$

 M_2, M_3, M_4: Stage 2~4 in the flow diagram

- Considerations for M_2, M_3, M_4
 - Contain integers only
 - Small magnitude to avoid multiplications
 - Be sparse
Fast Algorithm for the Odd Part (Cont.d)

- Constraints for M_2, M_3, M_4: each has the same properties of T_{80}
 - Orthogonality
 - Basis vectors has the same length (length of vector a: axa^T)

- Conditions (necessary, not sufficient) of existence under the constraints (n_{80}, n_2, n_3, and n_4 represent the length of each matrix)
 \[
 |\det(T_{80})| = |\det(M_2)| \times |\det(M_3)| \times |\det(M_4)| \tag{1}
 \]
 \[
 \Rightarrow n_{80}^4 = n_2^4 \times n_3^4 \times n_4^4 \tag{2}
 \]
 \[
 \Rightarrow n_{80} = n_2 \times n_3 \times n_4 \tag{3}
 \]

n_{80} is the product of at least 3 prime numbers

- (3) means n_2, n_3, and n_4 are much smaller than n_{80}, which indicates the elements in the three matrices have very small magnitudes and may also contain many zeros.
Fast Algorithm for the Odd Part (Cont.d)

- Search M_2, M_3, M_4, start from M_4
 \[T_{8o}x(M_4)^{-1} = M_2xM_3xM_4x(M_4)^{-1} \Rightarrow T_{8o}x(M_4)^T/n_4 = M_2xM_3 \tag{4} \]

 - Notice, in (4)
 - $T_{8o}x(M_4)^T/n_4$ contains only integers
 - $(M_4)^T$ can be regarded as a set of column vectors

- Search M_4
 - Establish a set of column vectors $\{b_i\}$, satisfying
 - Length of b_i is n_4, i.e., $b_i^xb_i^T = n_4$
 - $T_{8o}x b_i / n_4$ contains only integers
 - Pick out eight orthogonal column vectors from $\{b_i\}$ to form $(M_4)^T$ and thus get M_4.

- Search M_3 and M_2 (similar to searching M_4)
 \[[T_{8o}x(M_4)^T/n_4]x(M_3)^{-1} = M_2xM_3x(M_3)^{-1} \Rightarrow [T_{8o}x(M_4)^T/n_4]x(M_3)^T/n_3 = M_2 \tag{5} \]
An example

- **Even part** (T_{8e})

 \[
 \begin{array}{cccccccc}
 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
 10 & 9 & 6 & 2 & -2 & -6 & -9 & -10 \\
 10 & 4 & -4 & -10 & -10 & -4 & 4 & 10 \\
 9 & -2 & -10 & -6 & 6 & 10 & 2 & -9 \\
 8 & -8 & -8 & 8 & 8 & -8 & -8 & 8 \\
 6 & -10 & 2 & 9 & -9 & -2 & 10 & -6 \\
 4 & -10 & 10 & -4 & -4 & 10 & -10 & 4 \\
 2 & -6 & 9 & -10 & 10 & -9 & 6 & -2 \\
 \end{array}
 \]

- **Odd part** (T_{8o})

 \[
 \begin{array}{cccccccc}
 11 & 11 & 11 & 9 & 8 & 6 & 4 & 1 \\
 8 & 6 & 4 & 1 & -11 & -11 & -11 & -9 \\
 11 & 9 & -11 & -11 & -4 & -1 & 8 & 6 \\
 1 & 4 & -6 & -8 & 9 & 11 & -11 & -11 \\
 4 & -1 & -8 & 6 & 11 & -9 & -11 & 11 \\
 11 & -11 & -9 & 11 & -6 & 8 & 1 & -4 \\
 9 & -11 & 11 & -11 & -1 & 4 & -6 & 8 \\
 6 & -8 & 1 & -4 & 11 & -11 & 9 & -11 \\
 \end{array}
 \]

- \{a, b, c, d, ..., n, o\} =

 \{11, 11, 11, 9, 8, 6, 4, 1, 10, 9, 6, 2, 10, 4, 8\}

- **Even part** (T_{8e})

 order-8 ICT in AVS

- **Odd part** (T_{8o})

 \[|T_{8o}| = 9.9049 \times 10^{10}\]

 \[n_{8o} = 561 = 3 \times 11 \times 17\]

 \[n_2 = 17, \ n_3 = 3, \ n_4 = 11\]

 Search \ M_2, \ M_3, \ M_4 \ using \ the \ method \ in \ the \ previous \ page
An Example (Cont.d)

\[T_{80} = M_2 \times M_3 \times M_4 = \]

\[
\begin{bmatrix}
-2 & 0 & 1 & -1 & -1 & 3 & -1 & 0 \\
3 & -1 & 1 & 1 & 0 & 2 & 0 & 1 \\
-1 & -3 & 1 & 0 & 1 & 0 & 2 & -1 \\
0 & 1 & 0 & 1 & 3 & 1 & -1 & -2 \\
1 & -1 & -3 & -2 & 0 & 1 & 0 & -1 \\
1 & 1 & 1 & 0 & -2 & 0 & 1 & -3 \\
0 & -2 & 0 & 1 & -1 & -1 & -3 & -1 \\
-1 & 0 & -2 & 3 & -1 & 1 & 1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & -1 & -1 & -2 & 0 \\
-1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & -2 & 0 & -1 & 0 & 2 & -1 & 1 \\
0 & -1 & 0 & 2 & 1 & -1 & 0 & 2 \\
0 & -2 & 1 & 1 & 0 & 0 & 1 & -2 \\
-2 & 0 & -1 & 0 & 2 & 0 & -1 & -1 \\
-1 & 0 & 2 & 0 & -1 & -1 & -2 & 0 \\
-2 & 0 & 1 & -1 & 0 & 0 & 2 & 1 \\
-1 & 1 & 0 & 2 & -1 & 2 & 0 & 0 \\
-1 & -1 & -2 & 0 & -2 & -1 & 0 & 0 \\
\end{bmatrix}

ISCAS2007
12
An Example (Cont.d)
Complexity Analysis

Operation comparison with matrix multiplication

<table>
<thead>
<tr>
<th>Operation</th>
<th>Fast simplified ICT</th>
<th>Matrix multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>150</td>
<td>240</td>
</tr>
<tr>
<td>Multiplication</td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td>Shifting</td>
<td>32</td>
<td>0</td>
</tr>
</tbody>
</table>

Execution time comparison with matrix multiplication

Transform 10,000 data blocks using 3.2GHz CPU and the data in the blocks are uniformly distributed in [-256,255]

<table>
<thead>
<tr>
<th></th>
<th>Fast algorithm</th>
<th>Matrix multiplication</th>
<th>Saving time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCT</td>
<td>0.035 s</td>
<td>0.550 s</td>
<td>93.6%</td>
</tr>
<tr>
<td>Simplified ICT</td>
<td>0.025 s</td>
<td>0.293 s</td>
<td>91.4%</td>
</tr>
<tr>
<td>T_{80}</td>
<td>0.004 s</td>
<td>0.036 s</td>
<td>88.9%</td>
</tr>
</tbody>
</table>
Conclusion and Future Work

- In this paper, a universal approach to developing fast algorithms for simplified order-16 ICT is proposed.
 - A general transform matrix for simplified order-16 ICT
 - Decomposed matrix multiplication to addition and shifting operations by a universal method
 - Save 90% of the computational time compared with matrix multiplication

- Future work
 - When decomposing the odd part
 - Relax the constraints of each M_i matrices and explore whether number of operations can be reduced
 - Instead of exhaustive search, use new algorithm to search for a set of orthogonal vectors among a pool of vectors
Thank you!

Q&A