A Universal Approach to Developing Fast Algorithm for Simplified Order-16 ICT

Jie Dong, King Ngi Ngan, Chi Keung Fong and Wai Kuen Cham

Department of Electronic Engineering The Chinese University of Hong Kong

ISCAS2007, May 27-30, New Orleans, USA

Outline

Introduction
Simplified order-16 ICT
Proposed approach
Complexity analysis
Conclusion and future work

Introduction

Integer Cosine Transform (ICT)

- Pro: Integer arithmetic implementation Avoid mismatch between encoder and decoder Good energy compaction capability if well-designed Fast algorithms can be developed in the similar way for DCT
 Con: Orthogonality depends on the elements of transform
 - matrix, when the ICT is larger than order-4.

ICT for video coding

- Order-4 and Order-8 ICTs in H.264
- Order-8 ICT in Audio Video Standard (AVS)
- Order-16 ICT: efficient tool especially for HD video coding

Simplified Order-16 ICT

- Pro: Simpler while preserving the advantages of order-16 ICT
- Con: Cannot develop fast algorithm in the similar way for DCT/ICT

Simplified Order-16 ICT

General transform matrix

- Contain at most 15 different integers
- Naturally orthogonal
- Typical elements: represented by 4~5 bits

)	Ο	0	Ο	0	0	0	0	0	0	
a	b	С	d	е	f	g	h	-h	-g	\
	j	k		-1	-k	-j	-i	-i \	-j	
9	f	g	h	-a	-b	-C	-d	d	С	
n	n	-n	-m	-m	-n	n	m	m	n	
)	d	-a	-b	-g	-h	е	f	-f	-е	
j	-1	-i	-k	k	i	1	-j	-j	1	
ו	g	-f	-е	d	С	-b	-a	а	b	•••
)	-0	-0	0	0	- O	-0	0	0	-0	
J	-h	-е	f	С	-d	-a	b	-b	а	
۲	-i	1	j	-j	-	i	-k	-k	i	
)	-a	-d	С	-f	е	h	-g	g	-h	/
ו	-m	m	-n	-n	m	-m	n	n	-m	/
k	-C	b	-a	-h	g	-f	e	-е	f	•••
	-k	j_	-i	i/	-j [k	-	/-	k	/
	-е	h	-g	b	-a	d	-C	c	-d	

Flow Diagram

Steps of the Proposed Approach

Separate the 2-D transform into 2 1-D transforms

- Using 8 butterflies (left block) to exploit the symmetries w.r.t the dash line in the general transform matrix
- Fast algorithm for the even part (upper-right block) that is exactly the general transform matrix of an order-8 ICT.
 - Borrow order-8 ICTs and their fast algorithms, e.g., order-8 ICTs in H.264 or AVS
 - Otherwise, the fast algorithm will be developed in the same way for the odd part.

Fast algorithm for the odd part (bottom-right block)

An Order-8 ICT and its Fast Algorithm

 Order-8 ICT in H.264 is borrowed as the even part (upper-right block) X₀ of the simplified order-16 ICT

8	8	8	8	8	8	8	8	Λ
12	10	6	3	-3	-6	-10	-12	Χ
8	4	-4	-8	-8	-4	4	8	x
10	-3	-12	-6	6	12	3	-10	
8	-8	-8	8	8	-8	-8	8	Χ
6	-12	3	10	-10	-3	12	-6	X
4	-8	8	-4	-4	8	-8	4	
3	-6	10	-12	12	-10	6	-3	X

Fast Algorithm for the Odd Part

 T₈₀: a type of dyadic transform having different structures with the odd part of DCT/ICT

 Decompose T₈₀ to the multiplication of three 8x8 matrices instead of butterfly operations
 T₈₀=M₂xM₃xM₄
 M₂, M₃, M₄: Stage 2~4 in the flow diagram

Considerations for M₂, M₃, M₄

- Contain integers only
- Small magnitude to avoid multiplications
- Be sparse

Fast Algorithm for the Odd Part (Cont.d)

Constraints for M₂, M₃, M₄: each has the same properties of T₈₀

- Orthogonality
- Basis vectors has the same length (length of vector *a*: *a*x*a*^T)

 Conditions (necessary, not sufficient) of existence under the constraints (n₈₀, n₂, n₃, and n₄ represent the length of each matrix) |det(T₈₀)|=|det(M₂)|×|det(M₃)|×|det(M₄)| (1)

$$n_{80}^{4} = n_{2}^{4} \times n_{3}^{4} \times n_{4}^{4}$$

 $= n_{80} = n_2 \times n_3 \times n_4$

n₈₀ is the product of at least 3 prime numbers

(3) means n₂, n₃, and n₄ are much smaller than n₈₀, which indicates the elements in the three matrices have very small magnitudes and may also contain many zeros.

(2)

(3)

Fast Algorithm for the Odd Part (Cont.d)

Search M₂, M₃, M₄, start from M₄

 $T_{80} \times (M_4)^{-1} = M_2 \times M_3 \times M_4 \times (M_4)^{-1} \rightarrow T_{80} \times (M_4)^{T} / n_4 = M_2 \times M_3 \quad (4)$

- Notice, in (4)
 - $T_{80}x(M_4)^T/n_4$ contains only integers
 - (M₄)^T can be regarded as a set of column vectors
- Search M₄
 - Establish a set of column vectors { b_i}, satisfying
 - Length of b_i is n_4 , i.e., $b_i x b_i^T = n_4$
 - T₈₀xb_i/n₄ contains only integers
 - Pick out eight orthogonal column vectors from $\{b_i\}$ to form $(M_4)^T$ and thus get M_4 .

• Search M_3 and M_2 (similar to searching M_4) $[T_{80}x(M_4)^T/n_4]x(M_3)^{-1} = M_2xM_3x(M_3)^{-1} \rightarrow [T_{80}x(M_4)^T/n_4]x(M_3)^T/n_3 = M_2$ (5)

An example

• E	ver	n pa	rt ((T_{\circ}))		
8	8	8	8	、 8 8	8	8	8
10	9	6	2	-2	-6	-9	-10
10	4	-4	-10	-10	-4	4	10
9	-2	-10	-6	6	10	2	-9
8	-8	-8	8	8	-8	-8	8
6	-10	2	9	-9	-2	10	-6
4	-10	10	-4	-4	10	-10	4
2	-6	9	-10	10	-9	6	-2
• (Ddd	par	rt (*	Γ ₈₀)			
11	11	11		00/	6	Α	4
			9	0	U	4	
8	6	4	9 1	o -11	-11	4 -11	י -9
8 11	6 9	4 -11	9 1 -11	o -11 -4	-11 -1	4 -11 8	1 -9 6
8 11 1	6 9 4	4 -11 -6	9 1 -11 -8	。 -11 -4 9	-11 -1 11	4 -11 8 -11	-9 6 -11
8 11 1 4	6 9 4 -1	4 -11 -6 -8	9 1 -11 -8 6	o -11 -4 9 11	-11 -1 11 -9	4 -11 8 -11 -11	-9 6 -11 11
8 11 1 4 11	6 9 4 -1 -11	4 -11 -6 -8 -9	9 1 -11 -8 6 11	o -11 -4 9 11 -6	-11 -1 11 -9 8	4 -11 8 -11 -11 1	-9 6 -11 11 -4
8 11 1 4 11 9	6 9 4 -1 -11 -11	4 -11 -6 -8 -9 11	9 1 -11 -8 6 11 -11	o -11 -4 9 11 -6 -1	-11 -1 11 -9 8 4	4 -11 8 -11 -11 1 -6	-9 6 -11 11 -4 8

{a, b, c, d, ..., n, o}= {11, 11, 11, 9, 8, 6, 4, 1, 10, 9, 6, 2, 10, 4, 8}
Even part (T_{8e})

order-8 ICT in AVS

• Odd part (T_{80}) $|(T_{80})|=9.9049 \times 10^{10}$ $n_{80}=561=3 \times 11 \times 17$

 $n_2 = 17$, $n_3 = 3$, $n_4 = 11$

Search M_2 , M_3 , M_4 using the method in the previous page

An Example (Cont.d)

Complexity Analysis

Operation comparison with matrix multiplication

Operation	Fast simplified ICT	Matrix multiplication		
Addition	150	240		
Multiplication	0	256		
Shifting	32	0		

Execution time comparison with matrix multiplication

Transform 10,000 data blocks using 3.2GHz CPU and the data in the blocks are uniformly distributed in [-256,255]

	Fast algorithm	Matrix multiplication	Saving time
DCT	0.035 s	0.550 s	93.6%
Simplified ICT	0.025 s	0.293 s	91.4%
T ₈₀	0.004 s	0.036 s	88.9%

Conclusion and Future Work

In this paper, a universal approach to developing fast algorithms for simplified order-16 ICT is proposed.

- A general transform matrix for simplified order-16 ICT
- Decomposed matrix multiplication to addition and shifting operations by a universal method
 Save 90% of the computational time compared with

matrix multiplication

Future work

- When decomposing the odd part
 - Relax the constraints of each M_i matrices and explore whether number of operations can be reduced
 - Instead of exhaustive search, use new algorithm to search for a set of orthogonal vectors among a pool of vectors

Thank you!

ISCAS2007